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CONVERGENCE CHARACTERISTICS OF AUGMENTED 
HESSIAN MODELS FOR SEPARATIONS 

R. W. Frantz and V. Van Brunt 
Department of Chemical Engineering 
Swearingen Engineering Center 
The University of South Carolina 
Columbia, SC 29208 

ABSTRACT 

Previous research has shown that the form and 
number of MESH equations used to describe 
distillation/extraction systems can change both 
the linearity and convergence characteristics. 
In this paper, the structures of the equation 
sets for distillation and extraction models 
are analyzed in terms of the form of the three 
dimensional Hessian associated with them. It is 
known that for highly nonlinear equilibrium 
stage problems the N(2C+l),N(2C+3) variable 
forms used in the Naphthali-Sandholm model are 
more difficult to converge than newer models of 
Ricker-Nakashio-King and Krishnamurthy-Taylor 
that have N(4C) and N(5C+1) variables 
respectively. The convergence behavior of 
specific equation sets that augment the size of 
the Hessian are compared with the standard 
forms. 

Alternative models specifically designed to 
augment the Hessian are analyzed in terms of 
their convergence behavior. The convergence 
behavior is compared to MESH equation models. By 
creating models that specifically increase the 
equation set at points known to be poorly scaled 
and at the nonlinearity locations, improved 
convergence rate and solution stability can be 
achieved. 
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1504 FRANTZ AND VAN BRUNT 

INTRODUCTION 

Traditional modeling of dist llation and 
extraction systems has progressed from the Lewis- 
Matheson and Thiele-Geddes methods to matrix methods 
that are simultaneously converged(l,2). These matrix 
methods initially reduced the full equation set that 
described the system to isolate and converge subsets of 
the equations. This "tearing" procedure characterizes 
the early steady-state modeling(2,3). However, beginning 
with Newman(4) and Naphtali(5) and Naphtali and 
Sandholm(6) modeling represented refined description of 
the M(materia1 balances), E(equi1ibrium relations), 
S(summation of phase mole fractions) and H(energy) 
equations. These MESH equations have traditionally been 
written in two forms based on physical reasoning(7). 
Recently, expanded equation sets have been used(8). 
These expanded models include those of Ricker-Nakashio- 
King(8) and Krishnamurthy-Taylor(9). Reported 
convergence of these expanded models is faster than the 
traditional MESH equation models. This paper examines 
these models mathematically, i.e. in terms of their 
linearity and convergence character, and suggests 
alternative equation sets with different convergence 
properties. 

The MESH equation set models assume that there are 
C components and N stages. The Naphtali-Sandholm model 
consists of C component material balances, C component 
equilibrium relations, and an energy balance for each of 
the N stages, thus having a total of N(2C+1) equations. 
The balances are written in terms of the component 
flowrates in each phase(6). Alternatively, the material 
balances can be written in terms of component mole 
fractions and total molar flows. In such terms, two 
additional equations per stage are needed (for the 
total flow variables). Usually, the summation of mole 
fractions is used. The model consists of C component 
material balances, C equilibrium relations, one energy 
balance and two summation mole fraction equations per 
stage. The total number of equations to be converged to 
a solution is N(2C+3)(7,10). 

Newer models increase the number of variables and 
equations. They are based on representation of staged 
equipment in terms of mass transfer rather than an 
approach to equilibrium. The models consider the 
interface between the phases in addition to the bulk 
phases. 

For the isothermal Ricker-Nakashio-King model, 
there are two additional concentrations per stage 
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CONVERGENCE OF AUGMENTED HESSIAN MODELS 1505 

representing the interfacial compositions. The 
additional equations represent the component flux across 
the interface and an additional material balance. The 
equations per stage represent C component material 
balances for phase I, C component material balances for 
phase 11, C component equilibrium relations between the 
interfacial phase compositions, and C steady-state flux 
equations across the interface. The resulting equation 
set has N(4C) equations. Convergence of extraction 
systems with complex equilibria is rapid, without 
special scaling required(8). 

The Krishnamurthy-Taylor model for distillation is 
a nonisothermal distillation model. Iteration is on 
temperatures as well as concentrations. In addition, 
the fluxes of each component are computed. Since both 
component material balances and fluxes are computed for 
each phase, one flux can be obtained by subtraction and 
is not independent. For each stage, the model has C 
component material balances for the vapor, C component 
material balances for the liquid, C-1 steady-state flux 
equations to the interface, C-1 component flux equations 
from the interface, C component equilibrium relations 
between interfacial compositions, two energy 
balances(one for each phase), and one energy flux 
equation across the interface. The total number of 
equations in this model is N(SC+l). Convergence of this 
model is usually with fewer iterations than convergence 
with the Naphtali-Sandholm N(2C+1) model(ll,l2). 

The formulation of these models relies on 
traditional notions of the physics and chemistry 
occurring in process equipment. Difficulties with 
convergence of these nonlinear models have forced 
consideration of techniques other than multivariate 
Newton and Quasi-Newton procedures. Indeed, multiple 
steady-state solutions have been obtained 
(11,13,14,15,16,17,18,19). The state of the art is 
summarized elsewhere(l3,16). Many of the difficult 
separations have only been solved using differential- 
homotopy continuation(ll,l8). However, the convergence 
criteria for multivariate Newton's method may be used 
to suggest a modeling procedure based on mathematics 
combined with physical description. 

A HATHEMATICAL BASIS FOR MODELING STAGED SEPARATIONS 

In our previous work(20) we developed a strong criterion 
for the quadratic convergence of multivariate Newton's 
method. This criterion expresses the required magnitudes 
of the norms of three quantities. The criterion is the 
multivariate version of the single variable requirement: 
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1506 FRANTZ AND VAN BRUNT 

Newton's method will converge to a root quadratically 
provided that 

I f(x) f"(x) 1 < I f'(x) I 111 

With scaler variables and functions, the first and 
second derivatives are scalers too. Thus, this criterion 
only states requirements in terms of absolute values. 
However, f o r  vector variables and functions, of length 
N, the criterion becomes: 

where (fr(x)) is the inverse of the Jacobian, an N x N 
matrix (second order tensor) and f"(x) is the Hessian, a 
third order tensor, and Ax is a vector. The criterion 
holds for appropriately defined norms (all scaler 
quantities). 

magnitudes of the largest elements in each of the terms 
on the left hand side. Specifically, consider what is 
the effect of starting an iteration too far away from 
the root. Clearly the norm of Ax is large and probably 
dominates the expression. Convergence is difficult. The 
norm of the inverse of the Jacobian is difficult to, 
apriori, predict. How can one improve the chances of  
success for Newton's method, even from a poor initial 
estimate? The norm of the Hessian is considered, 
because if it can be made sufficiently small, 
convergence will be quadratic, even from poor  starting 
points, because the inequality criterion will be met. A 
modeling procedure based on this reasoning is to 
formulate models for separations in such a way as to 
minimize the nonlinearities in the Jacobian and thereby 
reduce the number and magnitude of the elements in the 
Hessian. Scaling is just another way of stating that the 
elements in the Hessian should be on the order of one. 

In particular, the norms may be considered the 

The Hessians for distillation models are described 
below. The MESH equations form the well known block 
tridiagonal Jacobian. The Hessian for a set of 
equations representing a staged system is shown in 
figure 1. The second derivatives of each function are 
needed. The block tridiagonal Jacobian translates to a 
sparse three dimensional stack of tensor elements 
extending from those on the first stage to those on the 
last one. The nonzero elements for the Jacobian of the 
Naphtali-Sandholm MESH equations for each stage are 
given in the original paper(6). 

in figure 2 and by equations 3 - 7 .  
The N(2C+3) model and equation set are presented 
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1507 CONVERGENCE OF AUGMENTED HESSIAN MODELS 

'k. rn. 

Stage m 

Stage 2 

Stage 1 

Stage n 
Stage n-1 

Figure 1 Structure of the Hessian of the MESH Equations 
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1508 F R A N T Z  AND VAN B R U N T  

s2 = t Xiln - 1 
i 

The corresponding elements of the Hessian, to the best 
of  our knowledge, have never been examined. They are 
listed in table 1. 

Yi ,n 

QLn 

Figure 2 .  Equilibrium Stage Representation 
Stage = n ,  Component = i 
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Table 1. 
Elements of the Hessian of the MESH Equations 

ak: 
J. 

Hessian elements assuming: rn = qn = - - 0  - 181 
aYi 

From the mass balances 

a2Mi a2Mi 
(1 + Tn) - - - = -  

aLnaxi axiaLn 

From the equilibrium relations 
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1510 FRANTZ AND VAN BRUNT 

No Hessian elements from S1 and S2 

From the energy balance 

[201 

1211 

[ 2 2 1  

1231 

j 2 4 1  
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CONVERGENCE OF AUGMENTED HESSIAN MODELS 

a2H aHvn - = -(1 + Sn)- 
avn aT aT 

a2H aH1, 
- =  -(1 + Tn)- 
aLnaT aT 
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[ 2 6 1  
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1512 FRANTZ AND VAN BRUNT 

[361 

A s  can be seen, the nonzero elements in the 
Hessian are due to the nonlinear terms in the Jacobian. 
The magnitude of the energy balance terms dominate over 
almost all others. Also, only N(3C) terms derived from 
equilibrium relations include first order derivatives of 
K, the rest are second order effects. The terms 
resulting from material balances are constants. The 
terms resulting from the energy balance include zeroth, 
first and second order terms. No less than N(8C) 
elements include partial molar enthalpies, and N(8C+6) 
elements include heat capacities. Even f o r  correct 
values for all variables, the Hessian for this system 
has large magnitude terms. 

Scaling of the energy balance will only reduce the 
magnitude of these terms, not make them disappear. An 
alternative is to increase the number of variables with 
the goal of eliminating the large magnitude terms in 
the Hessian. 

Augmenting the Variables from (yfVfT,L,x) and the 
Equations from (M,E,Sl,Sz,H) 

This work investigates the convergence 
characteristics of two unique augmented systems. The 
first augmented equation set is formed by considering 
the partial molar enthalpies to be independent 
variables. This formulation increases the number o f  
equations per stage from 2C+3 (i.e. x,y,T,L,V) to 4C+3. 
The new variable set is, 

Variable Numbe r 
X: C 
I 

_Yi 
Hv: 
-I 

H 1  i 
T 
L 
V 

C 
C 
C 
1 
1 
1 

4c+3 
~ 
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CONVERGENCE OF AUGMENTED HESSIAN MODELS 1513 

To completely define the system, 2C additional 
equations must be added per stage. The logical choice 
for these equations is the difference between the new 
variables and their model description. Thus the new 
equation set would be, 

Equation 

Component Mass Balance 
Component distribution balance 
Energy balance 
Summation of xi - 1 = S1 
- Summation of yi - 1 = S2 
K i  - fHvi(yi,T) = Pli 
Hli - fHli(xi,T) = P2i 

Number 

C 
C 
1 
1 
1 
C 
C 
4c+3 
__. 

The second augmented system is formed by 
considering the stream enthalpies a s  independent 
variables. This formulation increases the number of 
equations per stage from 2C+3 (i.e. x,y,T,L,V) to 2C+5. 
The new variable set is, 

Variable Number 
X;  C 
Yi 
Hv 
H1 
T 
L 
V 

C 
1 
1 
1 
1 
1 

2C+5 
- 

[ 401 

To completely define the system, 2 additional 
equations must be added per stage. The logical choice 
for these equations is the difference between the new 
variables and their model description. Thus the new 
equation set would be, 

Equation Numbe 1: 

Component Mass Balance C 
Component distribution balance C 
Energy balance 1 
Summation of xi - 1 = S1 1 
Summation of yi - 1 = S2 1 
Hv - fHv(yj,T) = Ev 1 
H1 - fHl(xi,T) = El - 1 

2C+5 
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1514 FRANTZ AND VAN BRUNT 

Let us for a moment consider the Hessian of the 
first augmented equation set. The partial derivatives of 
the material,distribution, and summation equations will 
all be equal to zero. The terms of Pli and P2i will be 
weak functions of x,y,and T. The most significant terms 
of the Hessian are from the cross partials in the energy 
balance. Explicitly, the energy balance for the first 
augmented system is given by: 

Where mi and Ei denote the partial molar liquid and 
vapor enthalpies respectively. It can be seen from this 
equation that the energy balance is a function of all of 
the system variables except temperature. The temperature 
dependence of the energy balance has been eliminated and 
incorporated into the partial molar enthalpy equations 
Plj, and P2i. It can also be seen that the terms of the 
Hessian will contain system variables as some of the 
terms of the matrix. Specifically, some elements of the 
Hessian will contain partial molar enthalpies. These 
are typically three to five orders of magnitude and will 
tend to make the norm of the Hessian very large. 

In contrast to the 4 C + 3  formulation, the 2C+5 
formulation has an energy balance of the form given in 
equation [ 7 ]  with the assumptions of equation [ a ] .  The 
Hessian of this system has nonzero values of the 
following form. 
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a28 928 

avnaHvn BHV,~~, 
- - = -(1 + Sn) 

1515 

[ 4 5 1  

These equations are identical to the mass balance 
Hessian equations. In the 2C+5 formulation, both the 
component mole fractions as well as the temperatures 
have been eliminated from the energy balance 
derivatives. Furthermore, the values of the derivatives 
are orders of magnitude less than those found in the 
4C+3 formulation. The additional terms of the Hessian 
due to these equations are: 

aT 

Where, 

and , 
a s i  aHvi - 

CPVi -3 -P 

aT 
cpli 

aT 

1491 

[ 5 0 1  

[ 5 3 1  
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stg 21 

stg 12 

stg 7 

FRANTZ AND VAN BRUNT 

4 
Qcond=34999J/hr 
Tcond=101.02°C 

P-1 atm 

x2-0.0 - 
x1=0.0 

x3=l. 0 I F12=76.7 4 

T=181.4OC 

x3=O. 0 
T=103.0°C 

Figure 3 .  Toluene(l),Rethylcyclohexane(2),Pheno1(3) 
System 

EXAHPLES AND RESULTS 

The examples chosen were representative azeotropic 
distillation, extractive distillation and an 
alcohol/water ternary distillation with difficult 
convergence properties(l1). The azeotropic distillation 
is the methylcyclohexane/toluene/phenol column analyzed 
by Smith(2l) and Fredenslund et a1.(22). The extractive 
distillation system is the toluene/2-butanone/n-heptane 
system also previously examined (21,22). The 
methanol/ethanol/water column has been previously solved 
to meaningful results only with a customized homotopy 
procedure(l1). The configuration of these systems along 
with the converged solutions are presented in figures 3 ,  
4, and 5 respectively . 

The equilibria were modeled using the DECHEMA 
Wilson parameters(23). Parameters from ternary data were 
used to model the alcohol/water system(23). Vapor 
pressures were predicted using the Antoine equation. 
Both liquid and vapor component enthalpies were 
calculated using a standard state of zero degrees 
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stg 17 

stg 11 

stg 7 

stg 1 

1.517 

Qcond=197660 J/hr 
Tcond=77.17OC 

P=l atm 

4 

x3=O. 2792 
T=81.84 O C  

E=45.00 

F7=97.0 
X1'0.0 

x3=O. 0 
T-79.22 O C  

Figure 4. Toluene(l),2-Butanone(2),n-Heptane(3) 
System. 

Celsius and one atmosphere pressure. Heat of mixing 
effects were taken into account for the liquid phase. 
The vapor phase was assumed to be ideal at the column 
pressure (one atmosphere). 

Results of Numerical Experimentation 

The results of numerical experimentation of the 
two outlined augmented equation sets with the three 
simulations presented above are: 

the alcohol/water problem using Newton's method with 
line search provided ones initializes close to the 
operation condition. 
2. The first augmented Hessian model (4Ct3) did not 
perform as effectively as the 2C+3 model. 
3. The second augmented Hessian model performed as 
effectively as the 2C+3 model but not quicker or with a 
noticeably greater linearity. 

.l. It is possible to obtain a meaningful solution to 
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X2"0.2 - X 1 ' 0 . 1  I F12-100.0 

x3=O. 7 
T=80.5'C 

I 
stg 2 2  

stg 12 

stg 1 

I 

D=50.00 
X 1 ' 0 . 2 0 0  
x2=0.344 
x3=O. 451 

Qcond=79880 J/hr 
Tc0nd=l7.7~C 

P-latm 

1 
I l B s 5 0 . 0 0  - 

Qreb580556 J/h 
Treb199.97'C x3=0.944 

Figure 5. Methanol(l),Ethanol(2),Water(3) System 

CONCLUSIONS 

As a result of numerical experimentation: 

1. Systems of equations designed to augment the 
Hessian do not appear to converge faster than 
nonaugmented systems when the initial estimates are 
within the domain of attraction of  both equation sets. 

2 .  Although some experimental investigation has 
been done, the exact range of the domain of  attraction 
of the augmented systems compared to the MESH systems is 
still unknown. Work is continuing in this area. 

3. Augmenting the MESH variables with the stream 
enthalpies yields a Hessian that is far better scaled 
than the MESH variables augmented with the partial molar 
enthalpies. Numerical experimentation with both equation 
sets has shown that the stream enthalpy model converges 
more readily than the partial molar enthalpy model. 
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NOMENCLATURE 

H 
-i H1 
Hli, j 

HVi 
Hvi, j 

ki 
Ln 
Mi 

Ili 

P1 i 

P2 i 

QLn 
qn 
Qcond 
Qreb 

rn 
Sn 
S1 
s2 
st9 
T 
*n 
Treb 
Tcond 

N 

P 

RR 

B molar bottoms flow rate(moles/hr) 
- C number of components 
Cplilj partial derivative of the liquid partial molar 

enthalpy of component i on stage j w.r.t. 
- temperature 
Cpvi,j partial derivative of the vapor partial molar 

enthalpy of component i on stage j w.r.t. 
temperature 

D molar distillate flow rate(moles/hr) 
Ei equilibrium relationship for component i 
El Liquid enthalpy equation 
Ev Vapor enthalpy equation 
EX excess thermodynamic function 
Fi molar feed rate to stage i(moles/hr) 
fi feed mole fraction of component i to stage j 
fHi( xi ,T) Liquid stream enthalpy model (function of 

liquid phase composition and temperature) 
fHv(yi,T) Vapor stream enthalpy model(function of vapor 

phase composition and temperature) 
energy balance equation 
stream liquid enthalpy for stage i 
partial molar enthalpy for liquid component i 
on stage j 
stream vapor enthalpy for stage i 
partial molar enthalpy for vapor component i 
on stage j 
distribution value for component i(yi/xi) 
molar liquid rate from stage n 
molar mass balance for component i 
number of stages 
tray efficiency for tray i 
column pressure(atm0spheres) 
first partial molar enthalpy balance f o r  
component i 
second partial molar enthalpy balance for 
component i 
heat input to stage n 
fraction of  vapor entrained from stage n 
condenser heat duty(Joules/hour) 
reboiler heat duty(Joules/hour) 
reflux ratio(L/D) 
fraction of liquid backmixed from stage n 
fractional vapor sidestream from stage n 
first summation relationship 
second summation relationship 
stage 
temperature(de9. C) 
fraction of liquid sidestream from stage n 
reboiler temperature 
condenser temperature 
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1520 FRANTZ AND VAN BRUNT 

Vn molar vapor rate from stage n 
x i l J  

* liquid mole fraction of component i on stage j 
vapor mole fraction of  component i on stage j Yill 
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