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CONVERGENCE CHARACTERISTICS OF AUGMENTED
HESSIAN MODELS FOR SEPARATIONS

R. W. Frantz and V. Van Brunt
Department of Chemical Engineering
Swearingen Engineering Center

The University of South Carolina
Columbia, SC 29208

ABSTRACT

Previous research has shown that the form and
number of MESH equations used to describe
distillation/extraction systems can change both
the linearity and convergence characteristics.
In this paper, the structures of the equation
sets for distillation and extraction models

are analyzed in terms of the form of the three
dimensional Hessian associated with them. It is
known that for highly nonlinear equilibrium
stage problems the N(2C+1),N(2C+3) variable
forms used in the Naphthali-Sandholm model are
more difficult to converge than newer models of
Ricker-Nakashio-King and Krishnamurthy-Taylor
that have N(4C) and N(5C+1) variables
respectively. The convergence behavior of
specific equation sets that augment the size of
the Hessian are compared with the standard
forms.

Alternative models specifically designed to
augment the Hessian are analyzed in terms of
their convergence behavior. The convergence
behavior is compared to MESH equation models. By
creating models that specifically increase the
equation set at points known to be poorly scaled
and at the nonlinearity locations, improved
convergence rate and solution stability can be
achieved.
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INTRODUCTION

Traditional modeling of distillation and
extraction systems has progressed from the Lewis-
Matheson and Thiele-Geddes methods to matrix methods
that are simultaneously converged(1l,2). These matrix
methods initially reduced the full equation set that
described the system to isolate and converge subsets of
the equations. This "tearing" procedure characterizes
the early steady-state modeling(2,3). However, beginning
with Newman(4) and Naphtali(5) and Naphtali and
Sandholm(6) modeling represented refined description of
the M{material balances), E{equilibrium relations),
S{summation of phase mole fractions) and H(energy)
equations. These MESH equations have traditionally been
written in two forms based on physical reasoning(7).
Recently, expanded equation sets have been used(8).
These expanded models include those of Ricker-Nakashio-
King(8) and Krishnamurthy-Taylor(9). Reported
convergence of these expanded models is faster than the
traditional MESH equation models. This paper examines
these models mathematically, i.e. in terms of their
linearity and convergence character, and suggests
alternative equation sets with different convergence
properties.

The MESH equation set models assume that there are
C components and N stages. The Naphtali-Sandholm model
consists of C component material balances, C component
equilibrium relations, and an energy balance for each of
the N stages, thus having a total of N(2C+l) eguations.
The balances are written in terms of the component
flowrates in each phase(6). Alternatively, the material
balances can be written in terms of component mole
fractions and total molar flows. In such terms, two
additional equations per stage are needed (for the
total flow variables). Usually, the summation of mole
fractions is used. The model consists of C component
material balances, C equilibrium relations, one energy
balance and two summation mole fraction equations per
stage. The total number of equations to be converged to
a solution is N(2C+3)(7,10).

Newer models increase the number of variables and
equations. They are based on representation of staged
equipment in terms of mass transfer rather than an
approach to equilibrium. The models consider the
interface between the phases in addition to the bulk
phases.

For the isothermal Ricker-Nakashio-King model,
there are two additional concentrations per stage
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representing the interfacial compositions, The
additional equations represent the component flux across
the interface and an additional material balance. The
equations per stage represent C component material
balances for phase I, C component material balances for
phase II, C component equilibrium relations between the
interfacial phase compositions, and C steady-state flux
equations across the interface. The resulting equation
set has N(4C) equations. Convergence of extraction
systems with complex equilibria is rapid, without
special scaling required(8).

The Krishnamurthy-Taylor model for distillation is
a nonisothermal distillation model. Iteration is on
temperatures as well as concentrations., In addition,
the fluxes of each component are computed. Since both
component material balances and fluxes are computed for
each phase, one flux can be obtained by subtraction and
is not independent. For each stage, the model has C
component material balances for the vapor, C component
material balances for the liquid, C-1 steady-state flux
equations to the interface, C-1 component flux equations
from the interface, C component equilibrium relations
between interfacial compositions, two energy
balances(one for each phase), and one energy flux
equation across the interface. The total number of
equations in this model is N(5C+l). Convergence of this
model is usually with fewer iterations than convergence
with the Naphtali-Sandholm N(2C+1l) model(1l1l,12}).

The formulation of these models relies on
traditional notions of the physics and chemistry
occurring in process equipment. Difficulties with
convergence of these nonlinear models have forced
consideration of techniques other than multivariate
Newton and Quasi-Newton procedures. Indeed, multiple
steady-state solutions have been obtained
(11,13,14,15,16,17,18,19). The state of the art is
summarized elsewhere(13,16). Many of the difficult
separations have only been solved using differential-
homotopy continuation{(11,18). However, the convergence
criteria for multivariate Newton’'s method may be used
to suggest a modeling procedure based on mathematics
combined with physical description.

A MATHEMATICAL BASIS FOR MODELING STAGED SEPARATIONS

In our previous work(20) we developed a strong criterion
for the quadratic convergence of multivariate Newton’s
method. This criterion expresses the required magnitudes
of the norms of three qguantities. The criterion is the
multivariate version of the single variable requirement:
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Newton’s method will converge to a root quadratically
provided that

| £(x) £"(x) | < | £'(x) | (1)

With scaler variables and functions, the first and
second derivatives are scalers too. Thus, this criterion
only states requirements in terms of absolute values.
However, for vector variables and functions, of length
N, the criterion becomes:

PECEZ () b1 THER G L] ) ax ) < 1 2]

where (f’(x)) is the inverse of the Jacobian, an N x N
matrix (second order tensor) and f"(x) is the Hessian, a
third order tensor, and Ax is a vector. The criterion
holds for appropriately defined norms {(all scaler
quantities).

In particular, the norms may be considered the
magnitudes of the largest elements in each of the terms
on the left hand side. Specifically, consider what is
the effect of starting an iteration too far away from
the root. Clearly the norm of Ax is large and probably
dominates the expression. Convergence is difficult. The
norm of the inverse of the Jacobian is difficult to,
apriori, predict. How can one improve the chances of
success for Newton’s method, even from a poor initial
estimate? The norm of the Hessian is considered,
because if it can be made sufficiently small,
convergence will be quadratic, even from poor starting
points, because the inequality criterion will be met. A
modeling procedure based on this reasoning is to
formulate models for separations in such a way as to
minimize the nonlinearities in the Jacobian and thereby
reduce the number and magnitude of the elements in the
Hessian. Scaling is just another way of stating that the
elements in the Hessian should be on the order of one.

The Hessians for distillation models are described
below. The MESH equations form the well known block
tridiagonal Jacobian. The Hessian for a set of
equations representing a staged system is shown in
figure 1. The second derivatives of each function are
needed. The block tridiagonal Jacobian translates to a
sparse three dimensional stack of tensor elements
extending from those on the first stage to those on the
last one. The nonzero elements for the Jacobian of the
Naphtali-Sandholm MESH equations for each stage are
given in the original paper(6).

The N(2C+3) model and equation set are presented
in figure 2 and by equations 3 - 7.
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Xk, m+1 ”
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xk. m-11 X
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Figure 1 Structure of the Hessian of the MESH Equations

Mi = ¥i,n-1Yn-1 * %Xi,n+1ln+1 + 9n+1¥i,n+1Vn+1 +
'n-1Xj,n-1Lpn-1 - (1 + 85 + Qn)¥i, nVn [3]

- (1 + Ty + fn)xi,n L, + fi,nFn

Ei = ¥i,n = (hp = 1)¥i n-1 - hpkixy,n (4]
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§; = 2{: Yi,n - 1 [5]

1
]
b
;

5
!
:

Sy (6]

H = Hvp 3Vn_1 + Hlpe1lpel + dpe1BVpeaVngen +
rn-1Hlp_1Lp—1 - (1 + S + qgup)HVLV, - {71
(1 + Ty + rp)Hl Ly + HERFL - Qpn

The corresponding elements of the Hessian, to the best

of our knowledge, have never been examined. They are
listed in table 1.

Yi,n
Vn An+1 $
Sn
Xi, n+1l
Lntl
(
ani,n z | QLn
)
(
I'n
Yi,n-1 'n-1
9n Vn-1 ’ Th
\ \
Xji,n
)

Figure 2. Equilibrium Stage Representation
Stage = n, Component = i
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Table 1.
Elements of the Hessian of the MESH Equations
aky
Hessian elements assuming: fn = 4y = — i8]
3y4
and
np =1 [9]
From the mass balances
aZmy aZmy
- = - (1+Tn) [10]
dL[9x4 9x;dLp
a%m; a2my
= = - (1 + Sp) [11}
Vpdyy  dy;idVp
a2m; a2my )
3ln4+19%i ,n+l 3%j ,n+12Ln+1
2 2
94M; 34My
: = [121]
Vn-19¥i,n-1  3¥Yi,n-13Vn-1
From the equilibrium relations
ain 3k azki
> = -2 — - Xj n 5 [13]
ax% 9xy axl,n
32E; ky 32k
=___xi, [14]
9Tax aT GTBXiIn
32E; 32k;
=—xi,n [15]
ar2 aT2
32E; akj a2k,
- — - x5, [16)
3x; 8T aT 9% 9T
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No Hessian elements from S; and Sj

From the energy balance

a2y 32H _
= = -(1 + Tn)Hli,n
9L 8Xj n axi'naLn
32H
= =(1+4Tp)LpCply n
3TAX; n
a2H
= =(1 + 8S)VpCpvj,n
QTayi'n
32K M1,
= - (1 + Tq)
9T3L, aT
32H 2%H .
= = - (1 + Sp)HV; q

avnayi,n ayi,navn

a2H MV,
= —{1 + Sp)
ATV, aT

a2n a2H _
= = Hli,n+l
dLn4+19%i n+l  9Xi n+19Lp+1

3%y
= Ln4+1CPLi,n+l
3T3X4 n+l
a2y aH1,,1q

aTALy, ) aT

[17]

(18]

[19]

[20]

{21}

[22]

[23)

(24]

[25]
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a2H 32n

' = Hvj n
8Vn-18¥i,n-1 3Y¥i,n-13Vp-}

a2y
———— = Vp_1CpVi, n-1
aTayi'n_l
32H aan_l
dTAVyH_1 aT
a2u AHV,
= —(1 + 5,)
3V, AT aT
a2H 31,
= —-(1 + Ty)
3Lp 3T aT
32
= —{1 + 8p)VaCpvy,n
Byi,nBT
32H
= (1 + T)L,Cpl;
Sxi’naT
a2u aHZvy, 9201,
= —({1 + S,)V - {1 + Tp)lp
at? neTR a2 a2
32H 8HVn 1

Wn-13T(n-1)  3T(n-1)

a2H

= Vu.1CPVi n-1
i, n-13T(n-1)

1511

126]

127]

[281]

[29]

{30]

[31]

{32]

133]

[34]

[35)
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a2H dHlp,
= [36]
3Ln4+18T(n+1)  3T(n+1)
32y
= Lp41Cpli n4d [37]

%3 ,n+13T(n+1)

As can be seen, the nonzero elements in the
Hessian are due to the nonlinear terms in the Jacobian.
The magnitude of the energy balance terms dominate over
almost all others. Also, only N(3C) terms derived from
equilibrium relations include first order derivatives of
K, the rest are second order effects. The terms
resulting from material balances are constants. The
terms resulting from the energy balance include zeroth,
first and second order terms. No less than N(8C)
elements include partial molar enthalpies, and N(8C+6)
elements include heat capacities. Even for correct
values for all variables, the Hessian for this system
has large magnitude terms.

Scaling of the energy balance will only reduce the
magnitude of these terms, not make them disappear. An
alternative is to increase the number of variables with
the goal of eliminating the large magnitude terms in
the Hessian.

Augmenting the variables from (y,Vv,T,L,x) and the
Equations from (M,E,S;,S;,H)

This work investigates the convergence
characteristics of two unique augmented systems. The
first augmented equation set is formed by considering
the partial molar enthalpies to be independent
variables. This formulation increases the number of
equations per stage from 2C+3 (i.e. x,y,T,L,V) to 4C+3.
The new variable set is,

variable Numbe r
X3
Yi
Bvj
Hl,;
T

{38]

HMEEEPEOOON

L
v

o
(]
+

)
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To completely define the system, 2C additional
equations must be added per stage. The logical choice
for these equations is the difference between the new
variables and their model description. Thus the new
equation set would be,

Equation Number

Component Mass Balance
Component distribution balance
Energy balance
Summation of x; - 1
Summation of y; - 1
Hv; - fHv;(y;,T)
Hl; - fHl;(x4,T)

53
S2

[39]

QAR FEFFON

I n
el

i
i

4

(@}

+3

The second augmented system is formed by
considering the stream enthalpies as independent
variables. This formulation increases the number of
equations per stage from 2C+3 (i.e. x,y,T,L,V) to 2C+5.
The new variable set is,

Variable Number
X3 Cc
vi C
Hv 1
H1l 1 [40]
T 1
L 1
Y 1
2C+5

To completely define the system, 2 additional
equations must be added per stage. The logical choice
for these equations is the difference between the new
variables and their model description. Thus the new
equation set would be,

Equation Number

Component Mass Balance
Component distribution balance
Energy balance
Summation of x; - 1
Summation of y; - 1
Hv - fHv(y;.,T) Ev
Hl - fHl(xj,T) = El

[41)])
31
52

e L X2 ke!
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Let us for a moment consider the Hessian of the
first augmented equation set. The partial derivatives of
the material,distribution, and summation equations will
all be egqual to zero. The terms of Plj and P2; will be
weak functions of x,y,and T. The most significant terms
of the Hessian are from the cross partials in the energy
balance. Explicitly, the energy balance for the first
augmented system is given by:

H = Vn-1§E:Yi,n-1HVi,n-1 + Ln+1§E:Xi,n+1§Ti,n+1 +

An+1Vn+1 ZYi,n+1ﬁ_Vi,n+l - (1+Shx+ap)Vp ZYi,nmi,n -
(42]

(1+Tn+rn)Ln§Z:xi,nﬁTi,n + rn—an—ljz:xi,n—lﬁTi,n-l +

HEnFpn - Qun

where Hl; and Hvj denote the partial molar liquid and
vapor enthalpies respectively. It can be seen from this
equation that the energy balance is a function of all of
the system variables except temperature. The temperature
dependence of the energy balance has been eliminated and
incorporated into the partial molar enthalpy equations
Pl;, and P2;. It can also be seen that the terms of the
Hessian will contain system variables as some of the
terms of the matrix. Specifically, some elements of the
Hessian will contain partial molar enthalpies. These
are typically three to five orders of magnitude and will
tend to make the norm of the Hessian very large.

In contrast to the 4C+3 formulation, the 2C+5
formulation has an energy balance of the form given in
equation (7] with the assumptions of equation [8]. The
Hessian of this system has nonzero values of the
following form.

a2y 32H
= =1 [43]
3Vp_18HVp_ 4 dHv_ 19V
a%H 32y
= = 1 [44)

3Lp419Hln,) 9Hlp,190n,1
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32n 32H
= = ~(1 + Sp) [45]
9V dHvy dHvVL VL
32n a2n
= = —(1 + Tp) [46]
dLp3Hl, dH1,3L,

These equations are identical to the mass balance
Hessian equations. In the 2C+5 formulation, both the
component mole fractions as well as the temperatures
have been eliminated from the energy balance
derivatives. Furthermore, the values of the derivatives
are orders of magnitude less than those found in the
4C+3 formulation. The additional terms of the Hessian
due to these equations are:

32Ev 32Ev 32fHv _
= - =Cpv; [47]
aTdy; dy; aT dy;oT
a2E1 3a2E1 92fH1
- - =Cpl; [48]
aTIxy 9x4; 9T dx;eT
32Ev aCpvy
- EZ: vi [49]
aT2 aT
32EL aCpl;
= z Xj [50]
aT2 aT
Where,
HI; = Hl; + H; X [51)
Hvy = Hvy + H;EX [52]
and,
BﬁTi aﬁ?i
= CpIi = Cpvy [53]

3T aT
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RR=8.1 D=12.24
x1=0.103
x2=0.897
x3=0.000

stg 21 <
F12=76.74 Qcond=34999J/hr
x1=0.0 Tcond=101.02°C
X2=0.0 —?Istg 12
X3=l.0
T=181.4°C

P=1 atm

F7=23.23
x1=0.5
%x2=0.5 —stg 7
x3=0.0
T=103.0°C

stg 1

B=87.76
> ¢x1=0.118

Qreb=45746 J/h [x=0.007
Treb=150.68°C x3=0.874

Figure 3. Toluene(l),Methylcyclohexane(2),Phenol(3)
System

EXAMPLES AND RESULTS

The examples chosen were representative azeotropic
distillation, extractive distillation and an
alcohol/water ternary distillation with difficult
convergence properties(ll). The azeotropic distillation
is the methylcyclohexane/toluene/phenol column analyzed
by Smith(21) and Fredenslund et al.{(22). The extractive
distillation system is the toluene/2-butanone/n-heptane
system also previously examined (21,22). The
methanol /ethanol /water column has been previously solved
to meaningful results only with a customized homotopy
procedure(1ll). The configuration of these systems along
with the converged solutions are presented in figures 3,
4, and 5 respectively

The equilibria were modeled using the DECHEMA
Wilson parameters(23). Parameters from ternary data were
used to model the alcohol/water system(23). Vapor
pressures were predicted using the Antoine equation.
Both liquid and vapor component enthalpies were
calculated using a standard state of zero degrees
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RR=1.5 D=249.0
-~ x1=0.004
x3=0.776
x3=0.219
stg 17
F11=197.0 Qcond=197660 J/hr
x1=0.2284 Tcond=77.17°C
x2=0.4924 }——™stg 11
X3=0.2792
T=81.84°C
P=1 atm
F7=97.0
x1=0.0
X9=1.0 —>stg 7
X3=0.0
T=79.22°C
stg 1
B=45.00

> (x1=0.975
Qreb=198110 J/h |x,3=0.016
Treb=109.00°C x3=0,009

Figure 4. Toluene(l),2-Butanone(2),n-Heptane(3)
System.

Celsius and one atmosphere pressure. Heat of mixing
effects were taken into account for the liquid phase.
The vapor phase was assumed to be ideal at the column
pressure (one atmosphere).

Results of Numerical Experimentation

The results of numerical experimentation of the
two outlined augmented equation sets with the three
simulations presented above are:

1. It is possible to obtain a meaningful solution to

the alcohol/water problem using Newton’s method with
line search provided ones initializes close to the
operation condition.

2. The first augmented Hessian model (4C+3) did not
perform as effectively as the 2C+3 model.
3. The second augmented Hessian model performed as

effectively as the 2C+3 model but not quicker or with a
noticeably greater linearity.
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RR=3,0 D=50.00
-> x1=0.200
x9=0.344
x3=0.457
stg 22J€
Qcond=79880 J/hr
Tcond=77.7°C
F12=100.0
x1=0,1
X2=0.2 —>|stg 12| P=latm
x3=0.7
T=80.5°C
stg 1 [«

B=50.00
- x1=0.000
Qreb=80556 J/h x5=0.056
Treb=99.97°C x3=0.944

Figure 5. Methanol(1l),Ethanol(2),Water(3) System

CONCLUSIONS
As a result of numerical experimentation:

1. Systems of equations designed to augment the
Hessian do not appear to converge faster than
nonaugmented systems when the initial estimates are
within the domain of attraction of both equation sets.

2. Although some experimental investigation has
been done, the exact range of the domain of attraction
of the augmented systems compared to the MESH systems is
still unknown. Work is continuing in this area.

3. Augmenting the MESH variables with the stream
enthalpies yields a Hessian that is far better scaled
than the MESH variables augmented with the partial molar
enthalpies. Numerical experimentation with both equation
sets has shown that the stream enthalpy model converges
more readily than the partial molar enthalpy model.
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NOMENCLATURE
B molar bottoms flow rate(moles/hr)
C number of components

partial derivative of the liquid partial molar

enthalpy of component i on stage j w.r.t.

temperature

partial derivative of the vapor partial molar

enthalpy of component i on stage j w.r.t.

temperature

molar distillate flow rate(moles/hr)

equilibrium relationship for component i

Liquid enthalpy equation

Vapor enthalpy equation

excess thermodynamic function

molar feed rate to stage i(moles/hr)

feed mole fraction of component i to stage j

T) Liquid stream enthalpy model(function of
liquid phase composition and temperature)

T) Vapor stream enthalpy model(function of vapor
phase composition and temperature)

energy balance equation

stream liquid enthalpy for stage i

partial molar enthalpy for liquid component i

on stage j

stream vapor enthalpy for stage i

partial molar enthalpy for vapor component i

on stage j

distribution value for component i(y;/xi)

molar liguid rate from stage n

molar mass balance for component i

number of stages

tray efficiency for tray i

column pressure(atmospheres)

first partial molar enthalpy balance for

component i

second partial molar enthalpy balance for

component i

heat input to stage n

fraction of vapor entrained from stage n

condenser heat duty(Joules/hour)

reboiler heat duty(Joules/hour)

reflux ratio(L/D)

fraction of liquid backmixed from stage n

fractional vapor sidestream from stage n

first summation relationship

second summation relationship

stage

temperature(deg. C)

fraction of liquid sidestream from stage n

reboiler temperature

condenser temperature
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Vi molar vapor rate from stage n

Xi,j liguid mole fraction of component i on stage j

Yi,j vapor mole fraction of component i on stage j
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