

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Convergence Characteristics of Augmented Hessian Models for Separations

R. W. Frantz^a; V. Van Brunt^a

^a Department of Chemical Engineering, Swearingen Engineering Center The University of South Carolina, Columbia, SC

To cite this Article Frantz, R. W. and Van Brunt, V.(1988) 'Convergence Characteristics of Augmented Hessian Models for Separations', *Separation Science and Technology*, 23: 12, 1503 — 1521

To link to this Article: DOI: 10.1080/01496398808075645

URL: <http://dx.doi.org/10.1080/01496398808075645>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CONVERGENCE CHARACTERISTICS OF AUGMENTED HESSIAN MODELS FOR SEPARATIONS

R. W. Frantz and V. Van Brunt
Department of Chemical Engineering
Swearingen Engineering Center
The University of South Carolina
Columbia, SC 29208

ABSTRACT

Previous research has shown that the form and number of MESH equations used to describe distillation/extraction systems can change both the linearity and convergence characteristics. In this paper, the structures of the equation sets for distillation and extraction models are analyzed in terms of the form of the three dimensional Hessian associated with them. It is known that for highly nonlinear equilibrium stage problems the $N(2C+1)$, $N(2C+3)$ variable forms used in the Naphthali-Sandholm model are more difficult to converge than newer models of Ricker-Nakashio-King and Krishnamurthy-Taylor that have $N(4C)$ and $N(5C+1)$ variables respectively. The convergence behavior of specific equation sets that augment the size of the Hessian are compared with the standard forms.

Alternative models specifically designed to augment the Hessian are analyzed in terms of their convergence behavior. The convergence behavior is compared to MESH equation models. By creating models that specifically increase the equation set at points known to be poorly scaled and at the nonlinearity locations, improved convergence rate and solution stability can be achieved.

INTRODUCTION

Traditional modeling of distillation and extraction systems has progressed from the Lewis-Matheson and Thiele-Geddes methods to matrix methods that are simultaneously converged(1,2). These matrix methods initially reduced the full equation set that described the system to isolate and converge subsets of the equations. This "tearing" procedure characterizes the early steady-state modeling(2,3). However, beginning with Newman(4) and Naphtali(5) and Naphtali and Sandholm(6) modeling represented refined description of the M(material balances), E(equilibrium relations), S(summation of phase mole fractions) and H(energy) equations. These MESH equations have traditionally been written in two forms based on physical reasoning(7). Recently, expanded equation sets have been used(8). These expanded models include those of Ricker-Nakashio-King(8) and Krishnamurthy-Taylor(9). Reported convergence of these expanded models is faster than the traditional MESH equation models. This paper examines these models mathematically, i.e. in terms of their linearity and convergence character, and suggests alternative equation sets with different convergence properties.

The MESH equation set models assume that there are C components and N stages. The Naphtali-Sandholm model consists of C component material balances, C component equilibrium relations, and an energy balance for each of the N stages, thus having a total of $N(2C+1)$ equations. The balances are written in terms of the component flowrates in each phase(6). Alternatively, the material balances can be written in terms of component mole fractions and total molar flows. In such terms, two additional equations per stage are needed (for the total flow variables). Usually, the summation of mole fractions is used. The model consists of C component material balances, C equilibrium relations, one energy balance and two summation mole fraction equations per stage. The total number of equations to be converged to a solution is $N(2C+3)$ (7,10).

Newer models increase the number of variables and equations. They are based on representation of staged equipment in terms of mass transfer rather than an approach to equilibrium. The models consider the interface between the phases in addition to the bulk phases.

For the isothermal Ricker-Nakashio-King model, there are two additional concentrations per stage

representing the interfacial compositions. The additional equations represent the component flux across the interface and an additional material balance. The equations per stage represent C component material balances for phase I, C component material balances for phase II, C component equilibrium relations between the interfacial phase compositions, and C steady-state flux equations across the interface. The resulting equation set has $N(4C)$ equations. Convergence of extraction systems with complex equilibria is rapid, without special scaling required(8).

The Krishnamurthy-Taylor model for distillation is a nonisothermal distillation model. Iteration is on temperatures as well as concentrations. In addition, the fluxes of each component are computed. Since both component material balances and fluxes are computed for each phase, one flux can be obtained by subtraction and is not independent. For each stage, the model has C component material balances for the vapor, C component material balances for the liquid, C-1 steady-state flux equations to the interface, C-1 component flux equations from the interface, C component equilibrium relations between interfacial compositions, two energy balances (one for each phase), and one energy flux equation across the interface. The total number of equations in this model is $N(5C+1)$. Convergence of this model is usually with fewer iterations than convergence with the Naphtali-Sandholm $N(2C+1)$ model(11,12).

The formulation of these models relies on traditional notions of the physics and chemistry occurring in process equipment. Difficulties with convergence of these nonlinear models have forced consideration of techniques other than multivariate Newton and Quasi-Newton procedures. Indeed, multiple steady-state solutions have been obtained (11,13,14,15,16,17,18,19). The state of the art is summarized elsewhere(13,16). Many of the difficult separations have only been solved using differential-homotopy continuation(11,18). However, the convergence criteria for multivariate Newton's method may be used to suggest a modeling procedure based on mathematics combined with physical description.

A MATHEMATICAL BASIS FOR MODELING STAGED SEPARATIONS

In our previous work(20) we developed a strong criterion for the quadratic convergence of multivariate Newton's method. This criterion expresses the required magnitudes of the norms of three quantities. The criterion is the multivariate version of the single variable requirement:

Newton's method will converge to a root quadratically provided that

$$| f(x) f''(x) | < | f'(x) | \quad [1]$$

With scalar variables and functions, the first and second derivatives are scalers too. Thus, this criterion only states requirements in terms of absolute values. However, for vector variables and functions, of length N , the criterion becomes:

$$||(f'(x))|| \ ||f''(x)|| \ ||\Delta x|| < 1 \quad [2]$$

where $(f'(x))$ is the inverse of the Jacobian, an $N \times N$ matrix (second order tensor) and $f''(x)$ is the Hessian, a third order tensor, and Δx is a vector. The criterion holds for appropriately defined norms (all scalar quantities).

In particular, the norms may be considered the magnitudes of the largest elements in each of the terms on the left hand side. Specifically, consider what is the effect of starting an iteration too far away from the root. Clearly the norm of Δx is large and probably dominates the expression. Convergence is difficult. The norm of the inverse of the Jacobian is difficult to, *a priori*, predict. How can one improve the chances of success for Newton's method, even from a poor initial estimate? The norm of the Hessian is considered, because if it can be made sufficiently small, convergence will be quadratic, even from poor starting points, because the inequality criterion will be met. A modeling procedure based on this reasoning is to formulate models for separations in such a way as to minimize the nonlinearities in the Jacobian and thereby reduce the number and magnitude of the elements in the Hessian. Scaling is just another way of stating that the elements in the Hessian should be on the order of one.

The Hessians for distillation models are described below. The MESH equations form the well known block tridiagonal Jacobian. The Hessian for a set of equations representing a staged system is shown in figure 1. The second derivatives of each function are needed. The block tridiagonal Jacobian translates to a sparse three dimensional stack of tensor elements extending from those on the first stage to those on the last one. The nonzero elements for the Jacobian of the Naphtali-Sandholm MESH equations for each stage are given in the original paper(6).

The $N(2C+3)$ model and equation set are presented in figure 2 and by equations 3 - 7.

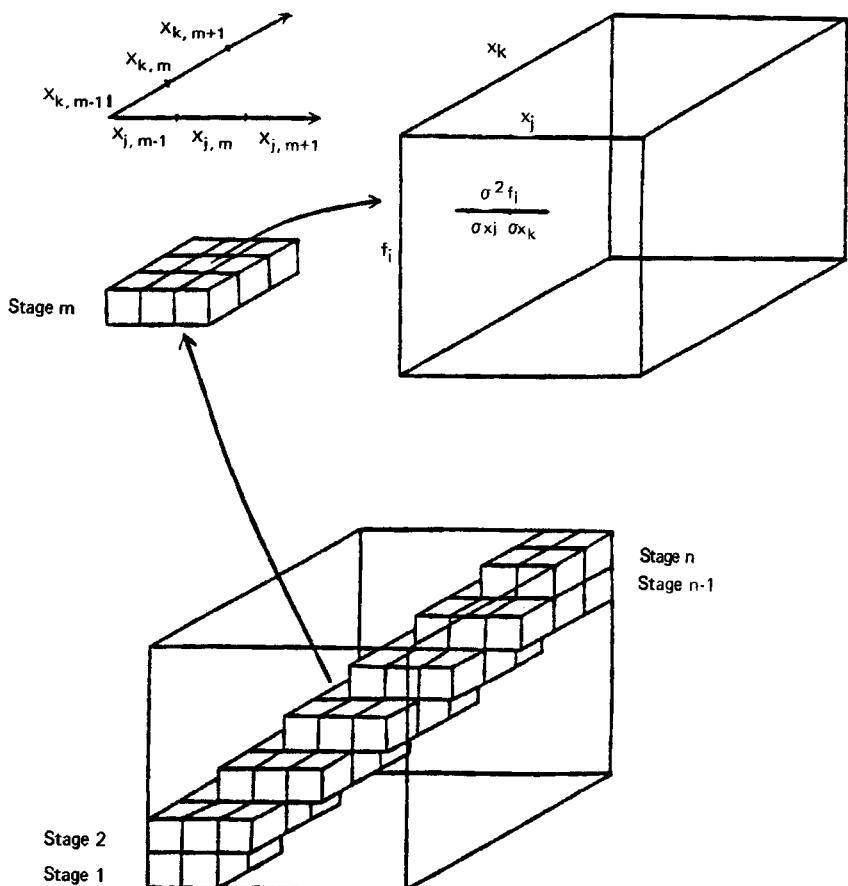


Figure 1 Structure of the Hessian of the MESH Equations

$$\begin{aligned}
 M_i = & y_{i,n-1} v_{n-1} + x_{i,n+1} L_{n+1} + q_{n+1} y_{i,n+1} v_{n+1} + \\
 & r_{n-1} x_{i,n-1} L_{n-1} - (1 + s_n + q_n) y_{i,n} v_n \\
 & - (1 + t_n + r_n) x_{i,n} L_n + f_{i,n} F_n
 \end{aligned} \quad [3]$$

$$E_i = y_{i,n} - (h_n - 1) y_{i,n-1} - h_n k_i x_{i,n} \quad [4]$$

$$s_1 = \sum_i y_{i,n} - 1 \quad [5]$$

$$s_2 = \sum_i x_{i,n} - 1 \quad [6]$$

$$H = Hv_{n-1}v_{n-1} + Hl_{n+1}L_{n+1} + q_{n+1}Hv_{n+1}v_{n+1} + \\ r_{n-1}Hl_{n-1}L_{n-1} - (1 + s_n + q_n)Hv_nv_n - \\ (1 + T_n + r_n)Hl_nL_n + Hf_nF_n - Q_{Ln} \quad [7]$$

The corresponding elements of the Hessian, to the best of our knowledge, have never been examined. They are listed in table 1.

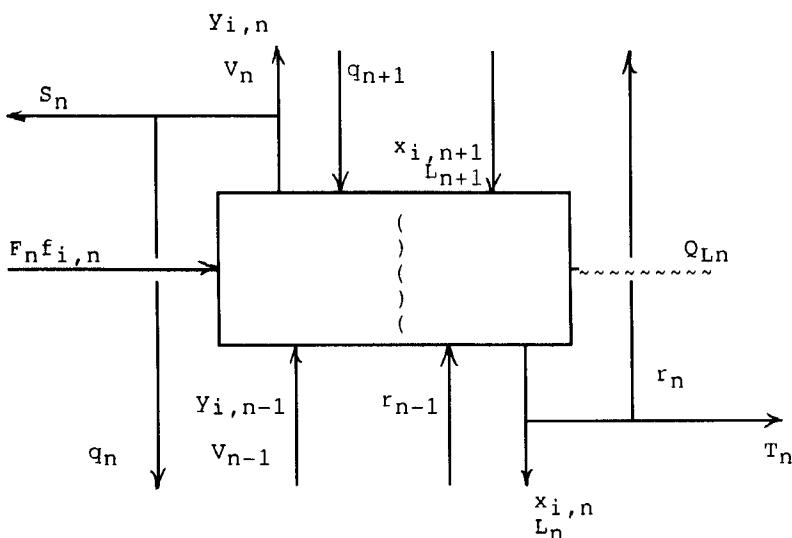


Figure 2. Equilibrium Stage Representation
Stage = n, Component = i

Table 1.
Elements of the Hessian of the MESH Equations

Hessian elements assuming: $r_n = q_n = \frac{\partial k_i}{\partial y_i} = 0$ [8]

and

$$n_n = 1 \quad [9]$$

From the mass balances

$$\frac{\partial^2 M_i}{\partial L_n \partial x_i} = \frac{\partial^2 M_i}{\partial x_i \partial L_n} = - (1 + T_n) \quad [10]$$

$$\frac{\partial^2 M_i}{\partial V_n \partial y_i} = \frac{\partial^2 M_i}{\partial y_i \partial V_n} = - (1 + S_n) \quad [11]$$

$$\begin{aligned} \frac{\partial^2 M_i}{\partial L_{n+1} \partial x_{i,n+1}} &= \frac{\partial^2 M_i}{\partial x_{i,n+1} \partial L_{n+1}} = \\ \frac{\partial^2 M_i}{\partial V_{n-1} \partial y_{i,n-1}} &= \frac{\partial^2 M_i}{\partial y_{i,n-1} \partial V_{n-1}} = 1 \end{aligned} \quad [12]$$

From the equilibrium relations

$$\frac{\partial^2 E_i}{\partial x_i^2} = -2 \frac{\partial k_i}{\partial x_i} - x_{i,n} \frac{\partial^2 k_i}{\partial x_{i,n}^2} \quad [13]$$

$$\frac{\partial^2 E_i}{\partial T \partial x_i} = - \frac{\partial k_i}{\partial T} - x_{i,n} \frac{\partial^2 k_i}{\partial T \partial x_{i,n}} \quad [14]$$

$$\frac{\partial^2 E_i}{\partial T^2} = - x_{i,n} \frac{\partial^2 k_i}{\partial T^2} \quad [15]$$

$$\frac{\partial^2 E_i}{\partial x_i \partial T} = - \frac{\partial k_i}{\partial T} - x_{i,n} \frac{\partial^2 k_i}{\partial x_i \partial T} \quad [16]$$

No Hessian elements from S_1 and S_2

From the energy balance

$$\frac{\partial^2 H}{\partial L_n \partial x_{i,n}} = \frac{\partial^2 H}{\partial x_{i,n} \partial L_n} = -(1 + T_n) \overline{Hl}_{i,n} \quad [17]$$

$$\frac{\partial^2 H}{\partial T \partial x_{i,n}} = -(1 + T_n) L_n \overline{Cp} \overline{l}_{i,n} \quad [18]$$

$$\frac{\partial^2 H}{\partial T \partial y_{i,n}} = -(1 + S_n) V_n \overline{Cp} \overline{v}_{i,n} \quad [19]$$

$$\frac{\partial^2 H}{\partial T \partial L_n} = -(1 + T_n) \frac{\partial Hl_n}{\partial T} \quad [20]$$

$$\frac{\partial^2 H}{\partial V_n \partial y_{i,n}} = \frac{\partial^2 H}{\partial y_{i,n} \partial V_n} = -(1 + S_n) \overline{Hv}_{i,n} \quad [21]$$

$$\frac{\partial^2 H}{\partial T \partial V_n} = -(1 + S_n) \frac{\partial Hv_n}{\partial T} \quad [22]$$

$$\frac{\partial^2 H}{\partial L_{n+1} \partial x_{i,n+1}} = \frac{\partial^2 H}{\partial x_{i,n+1} \partial L_{n+1}} = \overline{Hl}_{i,n+1} \quad [23]$$

$$\frac{\partial^2 H}{\partial T \partial x_{i,n+1}} = L_{n+1} \overline{Cp} \overline{l}_{i,n+1} \quad [24]$$

$$\frac{\partial^2 H}{\partial T \partial L_{n+1}} = \frac{\partial Hl_{n+1}}{\partial T} \quad [25]$$

$$\frac{\partial^2 H}{\partial v_{n-1} \partial y_{i,n-1}} = \frac{\partial^2 H}{\partial y_{i,n-1} \partial v_{n-1}} = \overline{Hv}_{i,n-1} \quad [26]$$

$$\frac{\partial^2 H}{\partial T \partial y_{i,n-1}} = v_{n-1} \overline{Cpv}_{i,n-1} \quad [27]$$

$$\frac{\partial^2 H}{\partial T \partial v_{n-1}} = \frac{\partial Hv_{n-1}}{\partial T} \quad [28]$$

$$\frac{\partial^2 H}{\partial v_n \partial T} = -(1 + s_n) \frac{\partial Hv_n}{\partial T} \quad [29]$$

$$\frac{\partial^2 H}{\partial L_n \partial T} = -(1 + T_n) \frac{\partial Hl_n}{\partial T} \quad [30]$$

$$\frac{\partial^2 H}{\partial y_{i,n} \partial T} = -(1 + s_n) v_n \overline{Cpv}_{i,n} \quad [31]$$

$$\frac{\partial^2 H}{\partial x_{i,n} \partial T} = -(1 + T_n) L_n \overline{Cpl}_{i,n} \quad [32]$$

$$\frac{\partial^2 H}{\partial T^2} = -(1 + s_n) v_n \frac{\partial H^2 v_n}{\partial T^2} - (1 + T_n) L_n \frac{\partial^2 Hl_n}{\partial T^2} \quad [33]$$

$$\frac{\partial^2 H}{\partial v_{n-1} \partial T_{(n-1)}} = \frac{\partial Hv_{n-1}}{\partial T_{(n-1)}} \quad [34]$$

$$\frac{\partial^2 H}{\partial y_{i,n-1} \partial T_{(n-1)}} = v_{n-1} \overline{Cpv}_{i,n-1} \quad [35]$$

$$\frac{\partial^2 H}{\partial L_{n+1} \partial T_{(n+1)}} = \frac{\partial H_{ln+1}}{\partial T_{(n+1)}} \quad [36]$$

$$\frac{\partial^2 H}{\partial x_{i,n+1} \partial T_{(n+1)}} = L_{n+1} \overline{Cp_i}_{i,n+1} \quad [37]$$

As can be seen, the nonzero elements in the Hessian are due to the nonlinear terms in the Jacobian. The magnitude of the energy balance terms dominate over almost all others. Also, only $N(3C)$ terms derived from equilibrium relations include first order derivatives of K , the rest are second order effects. The terms resulting from material balances are constants. The terms resulting from the energy balance include zeroth, first and second order terms. No less than $N(8C)$ elements include partial molar enthalpies, and $N(8C+6)$ elements include heat capacities. Even for correct values for all variables, the Hessian for this system has large magnitude terms.

Scaling of the energy balance will only reduce the magnitude of these terms, not make them disappear. An alternative is to increase the number of variables with the goal of eliminating the large magnitude terms in the Hessian.

Augmenting the Variables from (y, V, T, L, x) and the Equations from (M, E, S_1, S_2, H)

This work investigates the convergence characteristics of two unique augmented systems. The first augmented equation set is formed by considering the partial molar enthalpies to be independent variables. This formulation increases the number of equations per stage from $2C+3$ (i.e. x, y, T, L, V) to $4C+3$. The new variable set is,

Variable	Number
x_i	C
y_i	C
Hv_i	C
Hl_i	C
T	1
L	1
V	1
	$4C+3$

[38]

To completely define the system, $2C$ additional equations must be added per stage. The logical choice for these equations is the difference between the new variables and their model description. Thus the new equation set would be,

<u>Equation</u>	<u>Number</u>	
Component Mass Balance	C	
Component distribution balance	C	
Energy balance	1	
Summation of $x_i - 1 = S_1$	1	
Summation of $y_i - 1 = S_2$	1	
$Hv_i - fHv_i(y_i, T) = P1_i$	C	
$Hl_i - fHl_i(x_i, T) = P2_i$	C	
		<u>4C+3</u>

The second augmented system is formed by considering the stream enthalpies as independent variables. This formulation increases the number of equations per stage from $2C+3$ (i.e. x, y, T, L, V) to $2C+5$. The new variable set is,

<u>Variable</u>	<u>Number</u>	
x_i	C	
y_i	C	
Hv	1	
Hl	1	
T	1	
L	1	
V	1	
		<u>2C+5</u>

To completely define the system, 2 additional equations must be added per stage. The logical choice for these equations is the difference between the new variables and their model description. Thus the new equation set would be,

<u>Equation</u>	<u>Number</u>	
Component Mass Balance	C	
Component distribution balance	C	
Energy balance	1	
Summation of $x_i - 1 = S_1$	1	
Summation of $y_i - 1 = S_2$	1	
$Hv - fHv(y_i, T) = Ev$	1	
$Hl - fHl(x_i, T) = El$	1	
		<u>2C+5</u>

Let us for a moment consider the Hessian of the first augmented equation set. The partial derivatives of the material, distribution, and summation equations will all be equal to zero. The terms of $P1_i$ and $P2_i$ will be weak functions of x, y , and T . The most significant terms of the Hessian are from the cross partials in the energy balance. Explicitly, the energy balance for the first augmented system is given by:

$$\begin{aligned}
 H = & V_{n-1} \sum y_{i,n-1} \bar{Hv}_i,n-1 + L_{n+1} \sum x_{i,n+1} \bar{Hl}_i,n+1 + \\
 & q_{n+1} V_{n+1} \sum y_{i,n+1} \bar{Hv}_i,n+1 - (1+s_n+q_n)V_n \sum y_{i,n} \bar{Hv}_i,n - \\
 & (1+t_n+r_n)L_n \sum x_{i,n} \bar{Hl}_i,n + r_{n-1} L_{n-1} \sum x_{i,n-1} \bar{Hl}_i,n-1 + \\
 & Hf_n F_n - Q_{Ln}
 \end{aligned} \tag{42}$$

Where \bar{Hl}_i and \bar{Hv}_i denote the partial molar liquid and vapor enthalpies respectively. It can be seen from this equation that the energy balance is a function of all of the system variables except temperature. The temperature dependence of the energy balance has been eliminated and incorporated into the partial molar enthalpy equations $P1_i$, and $P2_i$. It can also be seen that the terms of the Hessian will contain system variables as some of the terms of the matrix. Specifically, some elements of the Hessian will contain partial molar enthalpies. These are typically three to five orders of magnitude and will tend to make the norm of the Hessian very large.

In contrast to the 4C+3 formulation, the 2C+5 formulation has an energy balance of the form given in equation [7] with the assumptions of equation [8]. The Hessian of this system has nonzero values of the following form.

$$\frac{\partial^2 H}{\partial V_{n-1} \partial H v_{n-1}} = \frac{\partial^2 H}{\partial H v_{n-1} \partial V_{n-1}} = 1 \tag{43}$$

$$\frac{\partial^2 H}{\partial L_{n+1} \partial H l_{n+1}} = \frac{\partial^2 H}{\partial H l_{n+1} \partial L_{n+1}} = 1 \tag{44}$$

$$\frac{\partial^2 H}{\partial V_n \partial H_{Vn}} = \frac{\partial^2 H}{\partial H_{Vn} \partial V_n} = -(1 + s_n) \quad [45]$$

$$\frac{\partial^2 H}{\partial L_n \partial H_{Ln}} = \frac{\partial^2 H}{\partial H_{Ln} \partial L_n} = -(1 + t_n) \quad [46]$$

These equations are identical to the mass balance Hessian equations. In the 2C+5 formulation, both the component mole fractions as well as the temperatures have been eliminated from the energy balance derivatives. Furthermore, the values of the derivatives are orders of magnitude less than those found in the 4C+3 formulation. The additional terms of the Hessian due to these equations are:

$$\frac{\partial^2 E_v}{\partial T \partial y_i} = \frac{\partial^2 E_v}{\partial y_i \partial T} = \frac{\partial^2 f_{Hv}}{\partial y_i \partial T} = \bar{C}_{pv_i} \quad [47]$$

$$\frac{\partial^2 E_l}{\partial T \partial x_i} = \frac{\partial^2 E_l}{\partial x_i \partial T} = \frac{\partial^2 f_{Hl}}{\partial x_i \partial T} = \bar{C}_{pl_i} \quad [48]$$

$$\frac{\partial^2 E_v}{\partial T^2} = \sum y_i \frac{\partial \bar{C}_{pv_i}}{\partial T} \quad [49]$$

$$\frac{\partial^2 E_l}{\partial T^2} = \sum x_i \frac{\partial \bar{C}_{pl_i}}{\partial T} \quad [50]$$

Where,

$$\bar{H}_i = H_i + H_i^{EX} \quad [51]$$

$$\bar{H}_{V_i} = H_{V_i} + H_{V_i}^{EX} \quad [52]$$

and,

$$\frac{\partial \bar{H}_i}{\partial T} = \bar{C}_{pl_i} \quad \frac{\partial \bar{H}_{V_i}}{\partial T} = \bar{C}_{pv_i} \quad [53]$$

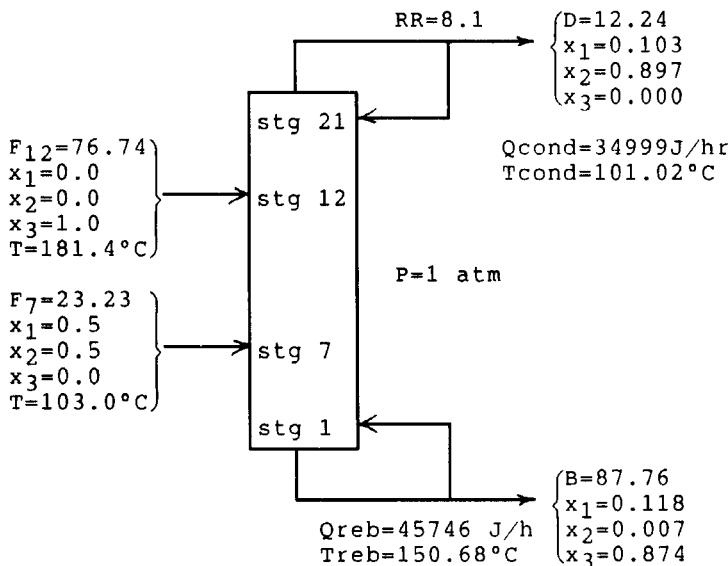


Figure 3. Toluene(1), Methylcyclohexane(2), Phenol(3) System

EXAMPLES AND RESULTS

The examples chosen were representative azeotropic distillation, extractive distillation and an alcohol/water ternary distillation with difficult convergence properties(11). The azeotropic distillation is the methylcyclohexane/toluene/phenol column analyzed by Smith(21) and Fredenslund et al.(22). The extractive distillation system is the toluene/2-butanone/n-heptane system also previously examined (21,22). The methanol/ethanol/water column has been previously solved to meaningful results only with a customized homotopy procedure(11). The configuration of these systems along with the converged solutions are presented in figures 3, 4, and 5 respectively .

The equilibria were modeled using the DECHEMA Wilson parameters(23). Parameters from ternary data were used to model the alcohol/water system(23). Vapor pressures were predicted using the Antoine equation. Both liquid and vapor component enthalpies were calculated using a standard state of zero degrees

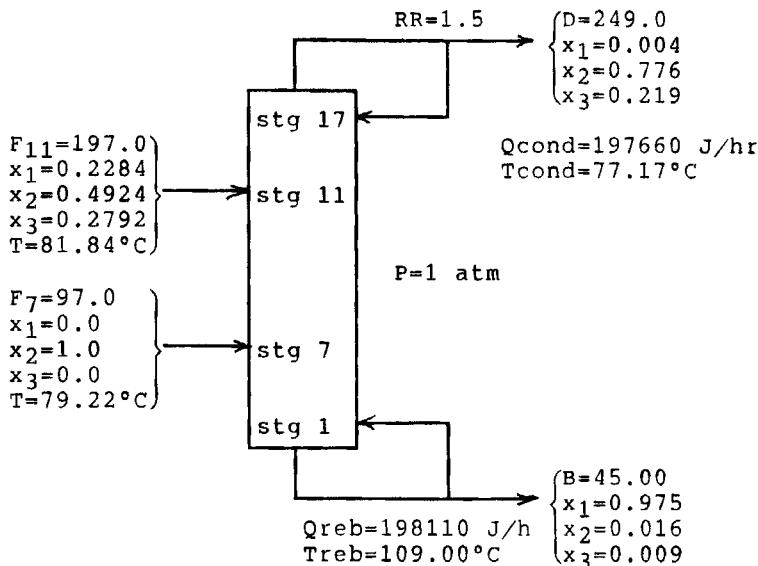


Figure 4. Toluene(1), 2-Butanone(2), n-Heptane(3) System.

Celsius and one atmosphere pressure. Heat of mixing effects were taken into account for the liquid phase. The vapor phase was assumed to be ideal at the column pressure (one atmosphere).

Results of Numerical Experimentation

The results of numerical experimentation of the two outlined augmented equation sets with the three simulations presented above are:

1. It is possible to obtain a meaningful solution to the alcohol/water problem using Newton's method with line search provided ones initializes close to the operation condition.
2. The first augmented Hessian model (4C+3) did not perform as effectively as the 2C+3 model.
3. The second augmented Hessian model performed as effectively as the 2C+3 model but not quicker or with a noticeably greater linearity.

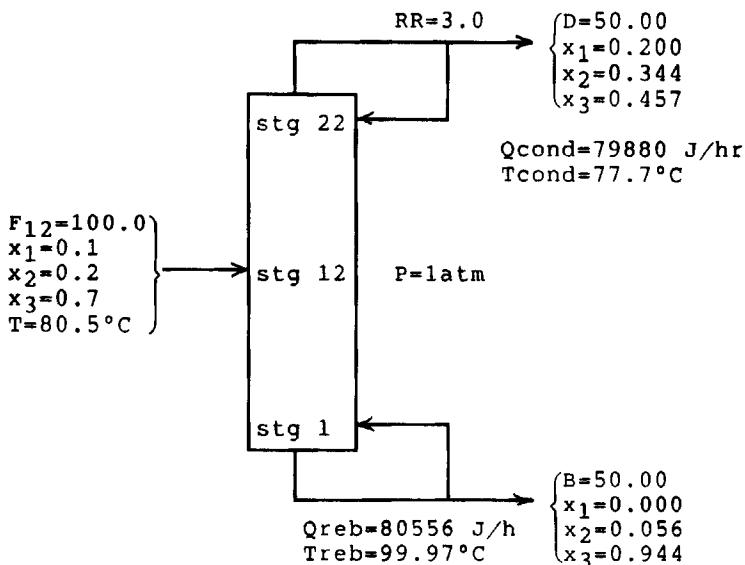


Figure 5. Methanol(1), Ethanol(2), Water(3) System

CONCLUSIONS

As a result of numerical experimentation:

1. Systems of equations designed to augment the Hessian do not appear to converge faster than nonaugmented systems when the initial estimates are within the domain of attraction of both equation sets.
2. Although some experimental investigation has been done, the exact range of the domain of attraction of the augmented systems compared to the MESH systems is still unknown. Work is continuing in this area.
3. Augmenting the MESH variables with the stream enthalpies yields a Hessian that is far better scaled than the MESH variables augmented with the partial molar enthalpies. Numerical experimentation with both equation sets has shown that the stream enthalpy model converges more readily than the partial molar enthalpy model.

NOMENCLATURE

B	molar bottoms flow rate(moles/hr)
C	number of components
$C_{Pl,i,j}$	partial derivative of the liquid partial molar enthalpy of component i on stage j w.r.t. temperature
$C_{Pv,i,j}$	partial derivative of the vapor partial molar enthalpy of component i on stage j w.r.t. temperature
D	molar distillate flow rate(moles/hr)
E_i	equilibrium relationship for component i
E_l	Liquid enthalpy equation
E_v	Vapor enthalpy equation
EX	excess thermodynamic function
F_i	molar feed rate to stage i(moles/hr)
$f_{i,n}$	feed mole fraction of component i to stage j
$f_{Hl}(x_i, T)$	Liquid stream enthalpy model(function of liquid phase composition and temperature)
$f_{Hv}(y_i, T)$	Vapor stream enthalpy model(function of vapor phase composition and temperature)
H	energy balance equation
H_{li}	stream liquid enthalpy for stage i
$H_{li,j}$	partial molar enthalpy for liquid component i on stage j
H_{vi}	stream vapor enthalpy for stage i
$H_{vi,j}$	partial molar enthalpy for vapor component i on stage j
k_i	distribution value for component i(y_i/x_i)
L_n	molar liquid rate from stage n
M_i	molar mass balance for component i
N	number of stages
η_i	tray efficiency for tray i
P	column pressure(atmospheres)
P_{li}	first partial molar enthalpy balance for component i
P_{2i}	second partial molar enthalpy balance for component i
Q_{Ln}	heat input to stage n
q_n	fraction of vapor entrained from stage n
Q_{cond}	condenser heat duty(Joules/hour)
Q_{reb}	reboiler heat duty(Joules/hour)
RR	reflux ratio(L/D)
r_n	fraction of liquid backmixed from stage n
S_n	fractional vapor sidestream from stage n
S_1	first summation relationship
S_2	second summation relationship
stg	stage
T	temperature(deg. C)
T_n	fraction of liquid sidestream from stage n
T_{reb}	reboiler temperature
T_{cond}	condenser temperature

v_n molar vapor rate from stage n
 $x_{i,j}$ liquid mole fraction of component i on stage j
 $y_{i,j}$ vapor mole fraction of component i on stage j

REFERENCES

1. King,C.J., *Separation Processes*, 2nd.ed., McGraw Hill, NY, pp 351-354(1980)
2. Henley,E.J. and J.D.Seader,*Equilibrium-Stage Separation Operations in Chemical Engineering*, Wiley, NY(1981)
3. Wang,J.C. and G.E. Henke,*Tridiagonal Matrix for Distillation, Hydrocarbon Processing*, 45, No.8, 155, No.9169(1966)
4. Newman, J., UCRL-17739 (1967)
5. Naphtali,L.M.,*The Distillation Column as a Large System*,AIChE Mtg.,SanFrancisco,CA(1965)
6. Naphtali,L.M. and D.P.Sandholm,*Multicomponent Separation Calculations by Linearization*, AIChE Journ., 17, 148-153(1971)
7. Holland,C.D.,*Fundamentals of Multicomponent Distillation*, McGraw Hill, NY, (1984)
8. Ricker,N.L.,F. Nakashio, and C.J.King, *An Efficient,General Method for Computation of Countercurrent Separation Processes with Axial Dispersion*, AIChE Journ.,27,277-284(1981)
9. Krishnamurthy,R. and R. Taylor,*A Nonequilibrium Stage Model of Multicomponent Separation Processes*, AIChE Journ., 31, I&II, 449-460, III,1973-1983(1985)
10. Kovach,III,J.W. and W.D.Seider, *Heterogeneous Azeotropic Distillation-Homotopy-Continuation Methods*,AIChE Mtg., Miami Beach, FL(1986)
11. Vickery,D.J. and R. Taylor, *Path-Following Approaches to the Solution of Multicomponent, Multistage Separation Process Problems*, AIChE Journ., 32, 547-556(1986)
12. Taylor, R., *personal communication*(1986)
13. Seader, J.D.,*Computer Modeling of Chemical Processes*, AIChE Monog.,81, No.15,(1985)

14. Lin,W.-J.,J.D. Seader and T.L. Wayburn, Computing Multiple Solutions to Systems of Interlinked Separation Columns, *AIChE Journ.*, 33, 886-897(1987)
15. Wayburn,T.L. and J.D. Seader, Solutions of Systems of Interlinked Distillation Columns by Differential Homotopy-Continuation Methods, proceed. 2nd. Intern. Conf. on Found. of Computer-Aided Process Design, A.W.Westerberg & H.H.Chien eds., *CACHE*, Ann Arbor, MI, pp 765-862(1984)
16. Hlavacek,V. and P. Van Rompay, Simulation of Countercurrent Separation Processes via Global Approach, *Comput.Chem. Engr.*, 9, 343-350(1985)
17. Vickery,D.J.,T.L. Wayburn and R. Taylor, The Development of Homotopy Methods for the Solution of Difficult Separation Process Problems, *I.Chem.E. Brighton Conference*, England(1987)
18. Frantz, R.W. and V. Van Brunt, A Differential Homotopy Continuation Method for Interlinked Solvent Extraction Cascades, *Sep.Sci.&Tech.*, 22, 243-267(1987)
19. Frantz, R.W., Development and Application of Continuation Methods for the Solution of Engineering Systems, Master of Science Thesis, University of South Carolina, (1986)
20. O'Quinn, L.N., R.W. Frantz, and V. Van Brunt, Stability of a Steady-State Hydrometallurgical Solvent Extraction Model, *AIChE Mtg.*, Miami Beach, FL(1986)
21. Smith,B.D.,*Design of Equilibrium Stage Processes*, McGraw Hill, NY, pp 358-438(1963)
22. Fredenslund,A., J.Gmehling and P.Rasmussen, *Vapor-Liquid Equilibria using UNIFAC*, Elsevier, NY, pp 165-196(1977)
23. Gmehling, J.and R. Eckermann, *Vapor-Liquid Equilibrium Data Collection*, DECHEMA Deutsche Gesellschaft für Chemisches Apparatewesen, Frankfurt, W. Germany(1977)